Hướng dẫn cho Recursive Sequence
Chép code từ bài hướng dẫn để nộp bài là hành vi có thể dẫn đến khóa tài khoản.
Mình xin chia sẻ lời giải bài này như sau:
Ta có: \(\left\{\begin{matrix} a_i=b_i (\forall i\le k) \\ a_i =\sum\limits_{j=1}^{k}c_ja_{i-j} (\forall i>k)\end{matrix}\right.\)
\(\implies \begin{pmatrix}a_n & a_{n-1} & ... & a_{n-k+1}\end{pmatrix}.\begin{pmatrix}c_1 & 1 & 0 & ... & 0 \\ c_2 & 0 & 1 & ... & 0 \\ ... \\ c_n & 0 & 0 & ... &0 \end{pmatrix}=\begin{pmatrix}a_{n+1} & a_{n} & ... & a_{n-k+2}\end{pmatrix}\)
Để hiểu tại sao ta lại ra được công thức trên, các bạn cứ lấy các trường hợp nhỏ ứng với \(k=2,k=3,k=4,...\) là ta sẽ rút ra được quy luật.
Đến đây đặt \(p_n = \begin{pmatrix}a_n & a_{n-1} & ... & a_{n-k+1}\end{pmatrix}\) và \(M=\begin{pmatrix}c_1 & 1 & 0 & ... & 0 \\ c_2 & 0 & 1 & ... & 0 \\ ... \\ c_n & 0 & 0 & ... &0 \end{pmatrix}\)
Ta được: \(p_{n} = p_{n-1}.M = ... = p_k.M^{n-k}\)
trong đó: \(p_k=\begin{pmatrix}a_k & a_{k-1} & ... & a_{1}\end{pmatrix}\)
Đến đây, ứng với $n
Bình luận